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1 Introduction

This report is for the third coursework in Inverse Problems in Imaging for the
academic year of 2019 to 2020. It looks at the paper Stable Signal Recovery from
Incomplete and Inaccurate Measurements [1]. The first section will provide an
analysis of the aforementioned paper and discuss its influence. The latter section
will discuss the results found from any numerical experiments we undertake
from the information provided in the paper. The experiments carried out in
this report uses MATLAB exclusively and the source code can be found in the
appendix.

2 Reconstruction with Sparsity Constraints

2.1 Critical Analysis

Much like many inverse problems, this paper poses the problem as a system
of linear equations (SLE). Fundamentally, is it possible to recover x0 from the
equation y = Ax0 + e?
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Equation (1) sets up the problem. We would like to fully recover the signal
x0, where there are are more unknowns than there are observations. We can
refer to this as an underdetermined system of equations. Furthermore, this
equation also considers the very likely possibility of error in the form of noise
in our measurements. Regardless, this research argues that we can still recover
almost all of x0 through l1 minimisation.

”How influential has this paper been?”

As of writing, Google Scholar states that this research has been cited by
70021 later papers. It undoubtedly seems that this is quite a significant contri-
bution to the area of signal processing. The applications of this paper spread
far and wide, from Robust Face Recognition via Sparse Representation [3] to
Sparse MRI: The application of compressed sensing for rapid MR imaging [2].

In the latter paper [2], we can begin to see the impact of stable recovery
in MRI (Magnetic Resonance Imaging). MRI inherently works in the spatial
frequency, as it measures Fourier coefficients unlike raster information such as
pixels in spatial imaging. This is achieved by tracking the protons in the hydro-
gen atoms of human tissue: as they shift and realign due to the incident radio
waves (the y term in Equation 1). Magnetic sensors can pick up this realignment
from the millions of signals emitting from these protons and begin to reconstruct
the tissue (the result, otherwise known as the x0 term in Equation 1). Many of
these resulting signals can become distorted, or just missing - we refer to this
as sparse and with noise. This paper [2] was particularly novel, it showed that
the sparsity of MR images could be used to improve image resolution or reduce
scan time. This research went on to be cited 5450 times2.

Moreover, prior to [1], Nyquist and Shannon proved that stable recovery can
occur if the average sample rate is of twice the bandwidth. However, Candès
et al. provides an alternative, whereby stable recovery can occur ”for almost
any set of n coefficients provided that the number of non-zeros is of the order
of n

log(m)6 ” [1] (where n and m represents the dimensions of the image A). We

will talk more about this later.

1Link to Google Scholar results for Candès et al.
2Link to Google Scholar results for Lustig et al.
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”How and under what circumstances can a signal f be ex-
actly reconstructed from a discrete set of samples?”

If our matrix A obeys a uniform uncertainty principle then we are able to
solve the following minimisation problem and completely recover x0:

min ||x||l1 subject to Ax = y

This means that A obeys a restricted isometry hypothesis. This is however
for the unlikely situation of collecting data without noise - perfect measurement.
An imperfect measurement, which is much more likely to occur, requires us to
solve the following:

min ||x||l1 subject to ||Ax− y||l2 ≤ ε

The solution to this recovers an unknown sparse object with an error pro-
portional to the noise ε. Again, this still requires restricted isometry constants.
The paper [1] refers to many example matrices that obeys this hypothesis, such
as:

• Random matrices with independent and identically distributed entries.

• Fourier ensemble. Previously we mentioned how MRI scans pickup Fourier
coefficients; this is why this research is particularly useful as these coef-
ficients form an orthogonal set. Thus, any orthogonal ensemble can be
used.

• General orthogonal measurement ensemble.
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2.2 Numerical Experiments

In our experiment, consider an signal f of length 1024 x 1 and a result y of
length 300 x 1 observations. Therefore, this is experiment is measured with a
Gaussian measurement ensemble (image) A of size 300 x 1024.

y = Af (2)

We pose this as a minimisation problem to solve:

min||f ||1, subject to ||Af − y||2 <= ε (3)

Using the L1-Magic MATLAB package, we were able to recreate the exper-
iment found in the paper. The reconstruction (shown below) was very good.
We were almost perfectly able to reconstruct the original signal f using the
minimisation equation.

Figure 1: Upper-left: the sparse signal f with 50 non-zero values. Upper-right:
the signal multiplied to our measurement ensemble. Bottom-left: the output
signal y. Bottom-right: the reconstruction recovered from noisy measurements
with 11 iterations of L1-Magic.

In comparison, let us compare this solution to a more common Least-Squares
approach. This is solved as the following:

(A∗
T0AT0)−1A∗

T0y
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The output of this below shows that recovery of the original signal y was
almost non-existent.

Figure 2: A Least-Squares reconstruction recovered from noisy measurements.

To conclude, Figure 2 shows that L1 minimisation works incredibly well in
circumstances where the matrix obeys a uniform uncertainty principle. We are
able to recover the original signal almost exactly. The applications of such a
tool can be used in most inverse problems where the original signal needs to be
recovered. This is incredibly relevant today as this is a computationally efficient
approach, only requiring 11 iterations for this particular toy problem.
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3 Appendix

3.1 MATLAB Implementation

%% Inver se Problems in Imaging
% Coursework 3 − Numerical Experiment
% Jaspree t Singh Dhanjan

% Signa l l e n g t h
N = 1024 ;

% Observa t ions
K = 300 ;

% Gaussian matrix
A = rand (K, N) ;
U = orth (A’ ) ;
V = U’ ;

% Number o f non−zero c o e f f e c i e n t s
c = 50 ;

% Signa l
f = zeros (N, 1 ) ;
perm = randperm(N) ;
f ( perm ( 1 : c ) ) = sign (randn( c , 1 ) ) ;

% Apply to experiment
y = V ∗ f ;

% I n i t i a l guess
x0 = V’ ∗ y ;

% L1 magic
xp = l1eq pd ( x0 , V, [ ] , y , 1e−3);

f igure ;
subplot (2 , 2 , 1 ) ; plot ( f ) ; t i t l e ( ’ Input s i g n a l : f ( spar s e w/ 50 nonzeros ) ’ ) ;
subplot (2 , 2 , 2 ) ; plot ( x0 ) ; t i t l e ( ’ I n i t i a l guess : x0 ’ ) ;
subplot (2 , 2 , 3 ) ; plot ( y ) ; t i t l e ( ’ Output s i g n a l : y ’ ) ;
subplot (2 , 2 , 4 ) ; plot ( xp ) ; t i t l e ( ’ Reconstruct ion us ing L1 magic ’ ) ;
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3.2 L1 Console Output

Iteration = 1, tau = 1.604e+02, Primal = 1.411e+02, PDGap = 1.277e+02,
Dual res = 8.836e+00, Primal res = 1.752e-14 H11p condition number = 3.604e-
03

Iteration = 2, tau = 2.768e+02, Primal = 1.119e+02, PDGap = 7.398e+01,
Dual res = 4.473e+00, Primal res = 8.962e-15 H11p condition number = 5.362e-
03

Iteration = 3, tau = 4.199e+02, Primal = 9.421e+01, PDGap = 4.878e+01,
Dual res = 2.733e+00, Primal res = 1.402e-14 H11p condition number = 9.848e-
05

Iteration = 4, tau = 4.942e+02, Primal = 8.833e+01, PDGap = 4.144e+01,
Dual res = 2.272e+00, Primal res = 1.357e-14 H11p condition number = 6.534e-
05

Iteration = 5, tau = 6.735e+02, Primal = 7.882e+01, PDGap = 3.041e+01,
Dual res = 1.591e+00, Primal res = 1.109e-14 H11p condition number = 5.806e-
05

Iteration = 6, tau = 1.381e+03, Primal = 6.447e+01, PDGap = 1.483e+01,
Dual res = 6.687e-01, Primal res = 2.549e-14 H11p condition number = 1.748e-
05

Iteration = 7, tau = 1.122e+04, Primal = 5.180e+01, PDGap = 1.825e+00,
Dual res = 7.515e-03, Primal res = 2.081e-13 H11p condition number = 1.727e-
06

Iteration = 8, tau = 1.028e+05, Primal = 5.019e+01, PDGap = 1.992e-
01, Dual res = 7.515e-05, Primal res = 1.188e-12 H11p condition number =
2.990e-08

Iteration = 9, tau = 9.432e+05, Primal = 5.002e+01, PDGap = 2.171e-
02, Dual res = 7.515e-07, Primal res = 3.386e-12 H11p condition number =
2.020e-09

Iteration = 10, tau = 8.653e+06, Primal = 5.000e+01, PDGap = 2.367e-
03, Dual res = 7.515e-09, Primal res = 2.640e-11 H11p condition number =
2.605e-11

Iteration = 11, tau = 7.939e+07, Primal = 5.000e+01, PDGap = 2.580e-
04, Dual res = 7.515e-11, Primal res = 2.048e-10 H11p condition number =
3.140e-13
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