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Figure 1: Three separate client applications loading the 3D model with textures from the Hyperverse server. Left: Unity; Middle:
Python; Right: Three.js. Changes to the scene can then be propagated between clients in real-time.

ABSTRACT

While there are now many examples of successful collaborative
mixed reality applications, each application uses its own custom net-
working framework and applications rarely inter-operate. To enable
much larger-scale distributed systems, we will need inter-networking
protocols that allow heterogeneous applications to exchange data.
We demonstrate a proof of concept implementation that revisits the
concept of using a scene-graph as a bus. That is, sharing low-level
geometry and rendering information, rather than high-level semantic
events. Our networking protocol uses gITF fragments and edits to
express scene changes. We use the proof of concept to explore the
potential to inter-network very different applications that are based
on different underlying graphics engine technology.

Index Terms: Human-centered computing—Human computer in-
teraction (HCI)— Interaction paradigms—Mixed / augmented real-
ity; Networks—Network protocols—Application layer protocols—;

1 INTRODUCTION

The inter-networking of mixed-reality (MR) applications is a com-
plex problem, both because typical scenes contain a wide-variety of
different media types and because they have a requirement to deliver
updates in real-time at low latency. While there are many stan-
dards for many single media, such as audio and video, there are no
commonly-used standards for sharing virtual environments, includ-
ing geometry, dynamic objects, shading information, etc. (though
see discussion in Section 2). There are several reasons for this, but
one of them is that MR applications are often built around graphics
engines, such as Unity or Unreal, that embed a lot of engine-specific
detail in their data-structures. The problem is further complicated
by the typically fast update rates that are needed for simulation of
the movement of users and the types of simulation within the envi-
ronment such as physics simulation. These might need dozens of
updates per second, though the updates may be small.

The most common way to enable networking for a specific appli-
cation is to write a high-level, application-specific set of messages
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or remote-procedure calls that can be used by code specific to that
application to manage a set of assets created within the graphics
engine’s run-time environment [26]. This approach can be highly
efficient, but it does mean that applications are not inter-operable
with other applications. It can even be the case that not even different
versions of the same application can inter-operate because of the
tight binding of network messaging to the specific types associated
with data in the application.

There are alternatives to this, with standards such as X3D where
there is a common scene-graph data structure, and which is more
amenable to networking, since all the run-times that implement the
standard should at least preserve the core data and fields in the scene-
graph. Unfortunately, despite potential advantages, these models
have only had modest success and they are not well supported in the
leading game engine systems.

An alternative strategy for networking graphics application is the
concept of scene-graph-as-bus (SGAB) from Zeleznik et al. [28].
In this approach, messages are exchanged that describe a form of
neutral scene-graph that encodes the visual elements of the scene.
These messages can be translated or bridged into a native scene-
graph, so the main benefit of the SGAB idea is that application
developers need to implement this translation step once. As the
neutral scene-graph is quite generic, it can also represent a wide
variety of shared state. The main disadvantage is that only the
representation is shared, not any high-level state. We return to this
discussion later.

In this short paper we revisit this idea using recent tools. We also
suggest and show initial implementations of extensions that better
fit MR situations where updates are streamed continuously. We
demonstrate a proof of concept implementation of the SGAB that
uses the GL Transmission Format (glTF) as a neutral scene-graph,
called the Hyperverse Transfer Protocol (HVTP). gITF is designed
for transmission, but it is most commonly used as a file format for as-
set interchange and loading into run-time environments. In our proof
of concept, applications with different code bases (Unity, Python,
JavaScript), can share and modify gITF from within applications.
We then do two extensions to this proof of concept. Rather than
sharing whole gITF data blobs, we include a gITF diff function. We
then show an example of extending the mechanism to very rapidly
changing data, such as rigid transformations.

This proof of concept illustrates that the SGAB concept can have a
role in inter-networking of diverse applications. We discuss some of



the implementations challenges that are faced in making it scale and
some of the conceptual limitations that will necessitate extensions
to glTF, or support within a replacement for gITF, to encapsulate
important state that is otherwise not visible to the scene-graph layer.

2 BACKGROUND

2.1 Networking Graphics Applications

There are a diverse set of strategies, protocols and toolkits to enable
the networking of real-time graphics applications [24,26]. Mixed-
reality applications have complex requirements in that the types
of data that they need to exchange are complex (e.g. geometry,
textures) and fast-changing (e.g. motion of dynamic objects). Mixed-
reality applications can exploit streaming formats for certain media
such as audio and voice, but fast, dynamic interactions typically
require custom networking solutions (e.g. see [9]). Networking
these applications can also involve configuring servers and relay
services. There are toolkits that help with a lot of this functionality
(e.g. Photon Realtime, see [8]), but responsibility for the sharing of
application-specific data still falls to the application developer. For
example, they may need to develop and update serialisation methods
for their application-specific data, and then deal with synchronisation
discrepancies, ownership, etc.

One popular approach to networking of graphics applications
was to base the software around a scene-graph that could be shared
[10, 15, 16,21,27]. The observation was that given the graphics
engine of the application was written in a scene-graph system, that
scene-graph, with some simple additions, could represent the whole
state of the application, and then networking could be achieved by
encoding changes to the scene-graph in different messages. This
approach can supported multi-client applications, but saw particular
use in cluster-based rendering [12, 19].

In many of these tools, and their successors, there was strong
coupling between the networking and graphics scene-graph (e.g. the
Inventor library in DIV [15]). Others were more loosely coupled in
that the shared scene-graph was somewhat generic, and had multi-
ple different rendering implementation (e.g DIVE [11] which had
multiple renderers of quite different types including a direct mode
renderer in OpenGL and scene-graph mirroring into Performer [25]).

The theme of basing networking around the scene-graph was
taken to its logical extreme with Zeleznik et al.’s scene-graph as
bus (SGAB) proposal [28]. In that proposal a neutral scene is con-
structed, and applications shared changes to that neutral scene-graph.
Any application would need to transform the neutral scene-graph
into a rendering scene-graph or other structures necessary. However,
multiple heterogeneous applications could communicate only by
observing change to this neutral scene conveyed in a standard set of
messages. The main advantage of this approach is that the neutral
scene-graph can be relatively compact, and the messages types need
only to be constructed once. The main disadvantage is that all com-
munication or signalling must be done through the scene-graph, so
for any collaborative application, certain conventions would need
to be followed. While there might be standardised libraries for run-
time representation of the neutral scene-graph and updates to this,
there is a development hurdle in that this must be mirrored into the
application’s own data structures.

We also note the long history of 3D standards for the web such as
X3D. We consider these to be out of scope for the purpose of this
proof of concept because the support for serialising and deserialising
to such standards is very highly variable across implementations, and
they are not inherently designed themselves for network transmis-
sion. We do note that a binary version of VRML97 was embedded
in MPEG4 for streaming of scenes [23], and that extensions to X3D
to support networking between engines that have already loaded
scenes were proposed [4]. We refer the reader to a recent survey [7].
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2.2 Graphics Exchange Formats

Our goal is to revisit the SGAB concept as presented by Zeleznik
et al. [28]. The most complex part of any implementation would be
representation of standard assets that might be found in graphical
scenes. There have been significant developments in 3D file formats
in recent years. There are a plethora to choose from and each may
serve a different purpose. Pixar’s Universal Scene Description (USD)
[18] is a highly scalable format intended for rapid previewing of
3D geometry and shading. Autodesk’s FBX [1] is another favoured
by modellers. However, perhaps the most promising format to
consider is the GL Transmission Format (gITF) 2.0 by the Khronos
Group [13].

Since its initial introduction in October 2015, gITF has received
wide-support from the computer graphics community. A gITF 2.0
asset is represented by a JSON-formatted file which contains the
scene description. The scene can describe many basic elements of a
3D environment, such as cameras, animations, textures and the node
hierarchy. To describe the geometry, the scene description points to
a binary file via a URI which contains the buffer-based data, such as
vertices. The key advantage of this is that large vertex data sets can
be compressed and since the buffered data is already in an OpenGL
layout, it can be forwarded directly to the graphics card. Textures are
also supported and these too can be referenced in the scene and point
to an image file via a URI. Binary gITF (GLB) is an extension of
¢ITF, where all the gITF components such as the JSON file, binary
files and image files are merged into a single binary blob.

However, some do not consider the gITF specification as a com-
plete scene-graph. There is currently no way of including lights
within the scene description without the use of an extension. Ex-
tensions are supported in gITF and the Khronos Group have devel-
oped several of their own, such as the KHR Lights or the Specular-
Glossiness PBR extension.

Researchers have understood the significance of this format and
much work has been conducted around the transport of gITF formats.
Scully and Friston et al. describe a method of streaming gITF
models from a database to an X3DOM client [22]. Schilling et al.
also describes a method of streaming CityGML models using gITF
and Cesium.js [20]. While these systems show that gITF is suitable
as an inter-application transfer mechanism, they are focused on the
client-server sharing of static models. Our focus is on gITF as a
neutral format in a run-time and on the sharing of updates as multiple
clients change the scene.

Beyond academic research, there is a plethora of open-source
projects designed that support gITF in traditional game engines or
rendering applications. The most critical to the success of this project
is the range of gITF/GLB exporters and loaders available. Examples
include UnityGLTF by the Khronos Group [14], Trimesh [5] by
Dawson-Haggerty et al. and glTFForUE4 [3].

3 HYPERVERSE TRANSFER PROTOCOL
3.1

We refer to our networking protocol as the Hyperverse Transfer
Protocol (HVTP) [6]. This is arranged as a server-client system.
Clients are responsible for managing shared gITF fragments whilst
the server ensures changes made to the environment are propagated
to all other clients. In our system, the shared environment is referred
to as the Hyperverse. Figure 2 provides a snapshot of the components
within our distributed system.

Each client maintains a GLB representation of the shared state.
This representation will initially be synchronised with the state of
the server when the client joins. Each client must convert the GLB
representation to an engine format. Fortunately the data is already in
OpenGL-compatible formats, so often this is just a case of copying
data into a scene or directly to the graphics driver. Then updates
must be computed and shared, as discussed below. All transport is
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Figure 2: Message passing between clients and the server within the
system.

magic : int32

version : int32

16-byte fixed header
length : int32

type : int32

payload : uchar[]

Figure 3: HVTP packet layout.

currently done over a TCP streaming socket, except in the case of
the JavaScript application which uses WebSockets.

3.2 Packet Structure

Messages that are passed between the clients and the server are
designed to be as simple as possible. Since this is a bidirectional
protocol, it is up to both the server and the client to effectively
communicate state. Figure 3 describes the packet layout for HVTP
messages.

Magic A constant value of 0x48565450, which is the ASCII
representation of "HVTP”.

Version  Describes the version of the protocol. For this pro-
posal, it is a constant value of 0x1.

Length Indicates the logical size of the payload.

Type Describes the type of payload. It is used to signal
to the client or server application how the payload
should be processed.

Payload  gITF fragments for transmission - see Section 3.3.

3.3 Payload Types
Table 1 lists the types of payload that can be included in a packet.

INIT

Once the client connects to the server successfully, it is the respon-
sibility of the server to send the entire GLB file to the client in the
payload. This type of message is referred to as an INIT type.

3.3.1
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Table 1: Payload description per packet type.

Type ASCII Payload Description
INIT | 0x494e4954 | The complete GLB scene description
UPDT | 0x55504454 A byte diff of scene changes made
TRNS | 0x5452534c Transformation to specified object
3.3.2 UPDT

We want to be as efficient as possible when describing changes
that have been made to the scene-graph. If a client has modified
the scene, such as introduce new geometry or textures, then it is
this client’s responsibility to calculate the diff of the new GLB file
against the original. The diff is then transferred to the server under
the UPDT message type and it is then propagated to all other clients
in the Hyperverse. The clients and server each merge the diffs into
their own copies of the scene-graph.

Our proof of concept implementation is simple but deals com-
prehensively with change: a diff is calculated as a bitwise XOR
operation of the original GLB file against a new GLB file. The
result of the XOR operator can be interpreted as the difference of
bits across the two GLB files. Theoretically, since the number of
changed bits will be less than most of the total bits, we will have
more zeros than ones. This can be referred to as a sparse binary
string and it can be compressed. The entire UPDT process should
be faster than solely using the INIT packet type. This diff can be
compressed efficiently as it will be mostly blank unless a pervasive
scene change is made.

3.3.3 TRNS

One very common change in real-time mixed-reality scenes is the
movement of objects, not least any avatar or other representations of
the users. These updates can be frequent (60Hz+). Thus we propose
to encapsulate some changes very specifically: not as diffs but as
“higher-level” specific changes. Thus TRNS essentially needs to
reference a binary location in the GLB, and then a transformation.
We encode position, scale and a quarternion for rotatations.

This message type must also include a reference to the location
of the node within the scene that we are transforming. In gITF 2.0,
the node hierarchy is not represented as a scene-graph, but a disjoint
union of strict trees. Since no node can be a direct descendant of
more than one other node, we cannot apply a standard traversal
algorithm and to indicate where the node is located in the tree. For-
tunately, the gl TF specification allows for an optional node “name”
field. When the scene is exported to bytes, we can label each node
name using a universally unique identifier (UUID).

4
4.1

To demonstrate the interoperability of our protocol, we demonstrate
three clients:

IMPLEMENTATION
Clients

* Unity An example of a high-level game engine. It utilises
Microsoft’s .NET framework to manage code. See also Figure
4.

* Python (using Pyrender) A more accessible language used
extensively in data science, but not necessarily in computer
graphics. Paired with Python is a rendering framework Pyren-
der [17], which supports the gITF specification. See also Figure
4.

JavaScript (using Three.js) Used increasingly in computer
graphics due to its extreme portability on modern web browsers.
JavaScript is also an interpreted language but is confined to
the web model. Three.js is a highly-popular 3D rendering
framework which uses WebGL [2].



By selecting Unity, Python and web-based clients, we can demon-
strate that 3D graphics can be shared between very different lan-
guages, runtimes and rendering APIs. For this proof on concept
Unity was the only engine that modified the shared environment.
This was because it was straightforward to implement a 3D user
interface to allow user manipulation of objects as a demonstration.

4.2 Server

In this current proposal, the server does not perform any significant
processing or rendering. That allowed us to explore server engines
that are optimised for message passing tasks. Two servers were
implemented, one in Java and one in Python. Both used the built-in
socket API.

The server has its copy of the scene-graph. Any changes that a
client sends to the server will also modify the server’s scene-graph
in addition to the other client’s scene-graphs. The main purpose of
this is to have a persistent and reliable store of the environment for
late joiners, or in the case that the server must restart.

4.3

An initial implementations of the INIT protocols was prototyped
quickly in Unity using the GLTFSceneExporter [14]. Recall that
Unity is the only source of dynamic objects in this proof of concept,
and one implementation hurdle for future work is the implementation
effort to construct the GLB change for the target platform. The
loading applications (JavaScript, Python), can use a standard gITF
importer to load buffers transferred within the INIT payload. From
our experience in exploring gITF, serialisation implementations are
lagging behind in some cases. However, we might expect that
many clients (e.g. end-user applications) will typically load and
deserialise significant amounts of data, but that any serialisation
might be limited to simple updates, e.g. control of avatars. For
this case, the TRNS or a similar targeted update protocol might be
sufficient and these packet types are easy to construct and manage.

UPDT was prototyped by triggers that observed change in the
Unity scene, and then triggering serialisation of that scene branch.
A binary diff was calculated and then compressed with gzip.

To facilitate TRNS, we needed to index the GLB blob. Thus each
client has an internal dictionary, where the key represents the UUID
for each node within the GLB file and the value is a reference to
the geometry of the node within the client scene-graph. As clients
received TRNS packets, they performed a look-up of the node using
the UUID and applied the relevant translations.

We note that there are some implementation hurdles to over-
come, in particular the fact that some engines, e.g. Unity, are single
threaded. This leads to issues with blocking on reads of large updates,
which is not ideal for the mixed-reality case. There are workarounds
for this. For more detail of the implementations, see [6].

Implementation Detail

5 DISCUSSION AND CONCLUSION

HVTP is a proof of concept of using gITF as a neutral scene-graph to
facilitate real-time communication between heterogeneous rendering
engines. Given gITF is designed for sharing static 3D graphic assets,
our first demonstration can be compared to simply coordinating
the loading of different gITF files. However, the main point is that
the asset could have originated inside one of the engines, and thus
be serialised from one engine in real-time. We then extended this
to show that differences could be transmitted as updates, reducing
the bandwidth required. Finally, we showed a real-time update
extension, which deals with a practical problem of animating various
objects. This can be considered to be an optimisation for specific
types of common edit.

The main advantage of the SAGB approach is that the protocol
can share diverse data at real-time. Indeed, it can be used to syn-
chronise state between different applications, something that might
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otherwise involved the application developer writing quite signif-
icant functionality into the engine. This supports other run-time
features, such as naturally supporting late joiners to the scene and
not having to pre-load assets into an engine.

The main disadvantage is the the neutral scene-graph is not that
amenable to sharing abstract data types or isn’t necessarily efficient
in some situations. For example, if a physics simulation were com-
pletely deterministic, applications clients could all run the simulation
and would only need to share the starting conditions and time, rather
than the complex set of results. One way to share abstract with this
would be have invisible objects that represent state (e.g. a vertex
array in gITF with no corresponding geometry), but this then as-
sumes the different clients have the semantics of interpretation of
such data. Another approach might be to propose extensions to gITF
that specifically support the data sharing use.

In conclusion we believe that gITF deserves further study as a way
to share mixed reality scenes in real-time. We have demonstrated
a proof of concept that highlights that gITF is already useful for
sharing scenes in real-time. gITF 2.0 proved to be a good starting
point as it is already a binary format and it provides data structures
amenable for direct use in real-time engines with little parsing and
re targeting. For future implementations, we suggest to focus on pro-
tocols that deal with optimisations for common real-time operations
on scenes that extend our TRNS payload. This can complement
work that focuses on compressing the binary edits. Our own imme-
diate future work will extend the proof of concept to more graphics
engines.
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